Hexagonal lattice of 10-nm magnetic dots
نویسندگان
چکیده
منابع مشابه
Tailoring 10 nm scale suspended graphene junctions and quantum dots.
The possibility to make 10 nm scale, and low-disorder, suspended graphene devices would open up many possibilities to study and make use of strongly coupled quantum electronics, quantum mechanics, and optics. We present a versatile method, based on the electromigration of gold-on-graphene bow-tie bridges, to fabricate low-disorder suspended graphene junctions and quantum dots with lengths rangi...
متن کاملMagnetic fingerprints of sub-100 nm Fe dots
Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic “fingerprints” of 109 Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve FORC method. As the nanodot size increases from...
متن کاملWideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber
In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...
متن کاملRapid Synthesis of Sub‐10 nm Hexagonal NaYF4‐Based Upconverting Nanoparticles using Therminol® 66
We report a simple one-pot method for the rapid preparation of sub-10 nm pure hexagonal (β-phase) NaYF4-based upconverting nanoparticles (UCNPs). Using Therminol® 66 as a co-solvent, monodisperse UCNPs could be obtained in unusually short reaction times. By varying the reaction time and reaction temperature, it was possible to control precisely the particle size and crystalline phase of the UCN...
متن کاملMagnetic circular dichroism in EELS: towards 10 nm resolution.
We describe a new experimental setup for the detection of magnetic circular dichroism with fast electrons (EMCD). As compared to earlier findings the signal is an order of magnitude higher, while the probed area could be significantly reduced, allowing a spatial resolution of better than 40 nm. A simplified analysis of the experimental results is based on the decomposition of the mixed dynamic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2003
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.1543861